
Homework 4 and 5



6.7 b. Show that a heap of eight elements can be constructed in eight comparisons
between heap elements.

Tournament of pairwise comparisons





6.8 Show the following regarding the maximum item in the heap:
a. It must be at one of the leaves.
b. There are exactly N/2 leaves.
c. Every leaf must be examined to find it.

a - Proof by contradiction
Assume that it is not a leaf. Therefore, it must have at least one child. If it has a child, and it is the 
maximum element, then it must be greater than it’s child.  This violates the heap order property, which 
is a contradiction since the structure is a heap. 



6.8 b - Rely on the fact that the tree is complete.



6.8 Show the following regarding the maximum item in the heap:
c. Every leaf must be examined to find it.

Assume you have a heap that is a perfect tree of N nodes. Call it’s maximum element m Now add N+1 
nodes which are all greater than m. These values will all end up in the leaves of the heap in the order 
in which they are inserted. Any of them may be the greatest node in the entire heap. Therefore, the 
maximum element could be in any leaf.



Given input {4371, 1323, 6173, 4199, 4344, 9679, 1989} and a hash function
h(x) = x mod 10, show the resulting:
a. Separate chaining hash table.
b. Hash table using linear probing.
c. Hash table using quadratic probing.
d. Hash table with second hash function h2 (x) = 7 − (x mod 7).





Given input {4371, 1323, 6173, 4199, 4344, 9679, 1989} and a hash function
h(x) = x mod 10, show the resulting:
b. Hash table using linear probing.



Given input {4371, 1323, 6173, 4199, 4344, 9679, 1989} and a hash function
h(x) = x mod 10, show the resulting:
c. Hash table using quadratic probing.



Given input {4371, 1323, 6173, 4199, 4344, 9679, 1989} and a hash function
h(x) = x mod 10, show the resulting:
d. Hash table with second hash function h2 (x) = 7 − (x mod 7).



5.2. Rehash using a table size of 19 and a hash function of h(x) = x mod 19.
When rehashing, we choose a table size that is roughly twice as large and prime, which is 19.

(a) Scanning down the separate chaining hash table, the new locations are 4371 in list 1,
1323 in list 12, 6173 in list 17, 4344 in list 12, 4199 in list 0, 9679 in list 8, and 1989 in list
13.
(b) The new locations are 9679 in bucket 8, 4371 in bucket 1, 1989 in bucket 13, 1323 in
bucket 12, 6173 in bucket 17, 4344 in bucket 14 because both 12 and 13 are already occu-
pied, and 4199 in bucket 0.
(c) The new locations are 9679 in bucket 8, 4371 in bucket 1, 1989 in bucket 13, 1323 in
bucket 12, 6173 in bucket 17, 4344 in bucket 16 because both 12 and 13 are already occu-
pied, and 4199 in bucket 0.
(d) The new locations are 9679 in bucket 8, 4371 in bucket 1, 1989 in bucket 13, 1323 in
bucket 12, 6173 in bucket 17, 4344 in bucket 15 because 12 is already occupied, and 4199
in bucket 0



5.6 The isEmpty routine for quadratic probing has not been written. Can you implement
it by returning the expression currentSize==0?

No.

public void remove( AnyType x )

{

 int currentPos = findPos( x );

 if( isActive( currentPos ) )

   array[ currentPos ].isActive = false;

}

Remove doesn’t change currentSize! If it did, probing might fail.



7.12 What is the running time of heapsort for presorted input?
Heapsort uses at least (roughly) N log N comparisons on any input, so there are no particu-
larly good inputs. Even if the ordering is optimal for constructing the heap, pulling elements off will 
cause O(N log N) comparisons.
 This bound is tight; see the paper by Schaeffer and Sedgewick.

7.35
a) In how many ways can two sorted arrays of N elements be merged? 
We have 2 arrays of size A and B of size N which will be sorted into an array C of 2N objects. If we 
could figure out which N positions the items in A would go into, then there would be exactly 1 way the 
objects in the B would be added - we could treat B as a  queue, then read C from left to right and  and 
deque from B into C whenever an empty cell is encountered. Therefore, we are only free to choose 
the indices that A will fill, which means there are 2N choose N possible solutions. 
b) Give a nontrivial lower bound on the number of comparisons required to merge
two sorted lists of N elements, by taking the logarithm of your answer in part (a).
The information-theoretic lower bound is log 2N . Applying Stirling’s formula, we
N can estimate the bound as 2N − 1⁄2log N. http://en.wikipedia.org/wiki/Stirling%27s_approximation



7.37 Consider the following algorithm for sorting six numbers:
 Sort the first three numbers using Algorithm A.
 Sort the second three numbers using Algorithm B.
 Merge the two sorted groups using Algorithm C.

Show that this algorithm is suboptimal, regardless of the choices for Algorithms A,
B, and C

Algorithms A and B require at least three comparisons based on the information-theoretic
lower bound (ceil(log2(n!)) = 3). Algorithm C requires at least five comparisons, based on Exercise 7.35
(b).

So the algorithm requires 11 comparisons; but six elements can be sorted in 10 comparisons



9.2 If a stack is used instead of a queue for the topological sort algorithm in Section 9.2,
does a different ordering result? Why might one data structure give a “better”
answer?

The following ordering is arrived at by using a queue and assumes that vertices appear on an
adjacency list alphabetically. The topological order that results is then

   s, G, D, H, A, B, E, I, F, C, t

Assuming the same adjacency list, the topological order produced when a stack is used is
   s, G, H, D, A, E, I, F, B, C, t

Because a topological sort using queues processes vertices in the same manner as a breadth-first 
search, it tends to produce a more natural ordering.



9.19 If all the edges in a graph have weights between 1 and |E|, how fast can the
minimum spanning tree be computed?

Remember that the worst-case running time of Kurskals algorithm is O(|E| log |E|), which is dominated 
by the heap operations.

Using a heap to find the lowest edge value is not as efficient as the O(N) bucket sort. 

The obvious solution using elementary methods is to bucket sort the edge weights in linear
time. Then the running time of Kruskal’s algorithm is dominated by the union/find opera-
tions and is O ( | E | α( | E | , | V | )).



9.20 Give an algorithm to find a maximum spanning tree. Is this harder than finding a
minimum spanning tree?

Since the minimum spanning tree algorithm works for negative edge costs, an obvious solu-
tion is to replace all the edge costs by their negatives and use the minimum spanning tree
algorithm. This is obviously exactly the equivalent problem.


